RDCH 702: Lecture 12 Forensics in Nuclear Applications

- From Nuclear
 Forensics Analysis
 - Moody, Grant, Hutcheon
- Readings
 - Glasstone: Effects of Nuclear Weapon

Outline

- Isotopics
 - Variation with reactor
- Signatures from separations

Reported weapons-usable nuclear material seizures

As of September 21, 2007

• Devices

Plutonium Isotopics

- Reactor types
 - Light water reactor
 - \rightarrow ²³⁵U enrichment
 - CANDU
 - \rightarrow Natural uranium fuel, D₂O
- Pu formed in core or from blanket
 - U blanket may have a range of isotopic composition
 - → Natural, enriched, and anthropogenic
- Pu formation from neutron capture on ²³⁸U
 - ²³⁹Pu becomes a target for higher isotope production
 - \rightarrow (n, γ) up to ²⁴¹Pu
 - \rightarrow Also some (n,2n)
 - * $E_{min} = 5.7 \text{ MeV}$
 - * ²³⁸Pu from ²³⁹Pu

Plutonium isotopics

- ²³⁸Pu can also be produced through successive neutron capture on ²³⁵U
 - $^{235}U(n,\gamma)^{236}U$
 - $^{236}U(n,\gamma)^{237}U$
 - ²³⁷U beta decay to ²³⁷Np
 - $^{237}Np(n,\gamma)^{238}Np$
 - ²³⁸Np beta decay to ²³⁸Pu
- Mixture of Pu isotopics from fuel or blanket can act as a signature
 - ²³⁹Pu dominates at low burnups
 →Device Pu has 6 % ²⁴⁰Pu

Plutonium isotopics: Neutron Fluence

- Pu isotopics influence by neutron fluence and energy
- Neutron energy effected by
 - reactor operating temperature
 - Moderator
- Fuel size influences distance between neutron generation and moderator

- Fuel composition can influence neutron spectrum
 - Depletion of neutron in ²³⁵U resonance region due to higher interactions
- ²⁴⁰Pu production
 - Capture on ²³⁹Np produces ²⁴⁰Np, which decays into ²⁴⁰Pu
 - Competition between capture and decay

18-4

Plutonium Isotopics

- Evaluate ratios with ²⁴⁰Pu
 - Mass 240:239
 (MS)
 - Activity
 238/(239+240)
 (alpha
 spectroscopy)
- Varied reactor types, 37.5 MW/ton

Pu-240/Pu-239 by mass

- Large Pu isotopic variation
- Obvious variation for blanket and CANDU

18-5

Plutonium Isotopics: Irradiation time

- Comparison to
 ²³⁹Pu concentration
 - Can provide time since discharge →²⁴¹Pu is time sensitive
- Change in measure and expect ratio can be used to determine time since discharge

18-6

Plutonium Isotopics

Transplutonium Isotopics

- Am (242m, 243) and Cm (242, 244) sensitive to reactor power
 - Due to relative decay of ²⁴¹Pu and formation of ²⁴¹Am
 - → More ²⁴¹Am is available for reactions from longer times with low flux
 - * Weapons grade Pu from 10 day to 2 year irradiation
- From neutron reaction and beta decay of heavier Pu
- ²⁴³Pu beta decay to ²⁴³Am
 - Capture and decay to ²⁴⁴Cm
- Neutron capture on ²⁴¹Am
 - ²⁴²Am states
 - Ground state decay to ²⁴²Cm
- Strong flux dependence on ratios

6%²⁴⁰P11

- ²⁴⁴Cm and ²⁴³Am arise from multiple neutron capture on ²⁴¹Pu
- ²⁴²Cm (t_{1/2}=163 d) can determine time since discharge ¹⁸⁻⁹
 - Change from expected value compared to other ratios

Reprocessing

- 510 gU/g Pu for used fuel
- Majority of U remains, enrichment level to 0.62%
 - Depends upon the level of burnup
- Reprocessing limitations
 - Remote handling
 - Criticality issues
 - Limit impurities
- Range of reprocessing techniques
 - Precipitation
 - Molten salt
 - Ion exchange
 - Fluoride volatility
 - Solvent extraction

Table 3.1 Long-Lived Fission Products Presentat Discharge in Reactor Fuel Used to Produce 1gof Pu Containing 6%²⁴⁰Pu by Mass

Nuclide	Half-Life (years)	Mass (mg)	Activity (dpm)	
⁹⁰ Sr	28.5	11	3.4×10 ¹²	
⁹³ Zr	1.5×10^{6}	14 ^a	8.0×10^{7}	
⁹⁹ Tc	2.1×10^{5}	16	6.1×10 ⁸	
¹⁰⁶ Ru	1.01	4.1	3.0×10 ¹³	
¹²⁵ Sb	2.77	0.45	1.0×10^{12}	
¹²⁹ I	1.6×10^{7}	3.4	1.3×10^{6}	
¹³⁵ Cs	2.0×10^{6}	2.4	7.1×10^{6}	
¹³⁷ Cs	30.2	22	4.2×10^{12}	
¹⁴³ Nd	Stable	20	0	
¹⁵⁵ Eu	4.96	0.23	2.4×10 ¹¹	

Note: ORIGEN2 calculation, natural-U-fueled, graphite-moderated reactor, 37.5 MW_t /ton. ^aLower limit; ⁹³Zr is also produced in claddings.

Reprocessing

• BUTEX

- Dibutyl carbitol /solvent
 - → Relatively poor separation from Ru
 - * 1E3 rather than 1E6
 - → 1 g Pu has 1E7 dpm ¹⁰⁶Ru
- HEXONE
 - Methylisobutylketo ne solvent
 - Decontamination factors
 - \rightarrow 1E4 Ru
 - → 1E5 for Zr, Nb, and Ce
 - * 1 g Pu has 1000 dpm ⁹³Zr

- PUREX
 - Zr, Tc, and Ru observed
 - Ln, Np, and Th non-negligible
 - Nd is a key isotope, nature levels in reprocessing materials
 - → Natural and reactor Nd ratios are plant signatures

18-11

35

Table 3.3 Production of Selected Heavy-ElementNuclides in Reactor Fuel (at Discharge) Used toProduce 1g of Pu Containing 6% ²⁴⁰Pu by Mass

Nuclide	Half-Life (years)	Mass (g)	Activity (dpm)
²³⁷ Np	2.14×10^{6}	5.6×10^{-3}	8.8×10 ⁶
²⁴¹ Am ^a	432	9.7×10^{-6}	7.4×10^{7}
^{242m} Am	141	5.3×10 ⁻⁸	1.2×10 ⁶
²⁴³ Am	7370	3.9×10^{-6}	1.7×10 ⁶
²⁴² Cm	0.45	4.4×10^{-7}	3.2×10 ⁹
²⁴⁴ Cm	18.1	7.6×10^{-8}	1.4×10^{7}

Note: From the same ORIGEN2 calculation used to generate Table 3.1 data. ^a Assumes no in-growth from post-discharge decay of ²⁴¹Pu.

- Isotopes in Pu from incomplete separation and decay
 - Small masses, high activity

- Organic analysis
 - **Radiation effects**
 - \rightarrow Polymerization
 - \rightarrow TBP degradation
 - * Di, mono, and phosphoric acid
 - \rightarrow N-butonal and nitrobutane
- Changes extraction behavior, limits extraction efficiency
 - Formation of carboxylic acid, esters, ketones, nitroorganic compounds
- Signatures from processing
 - Range of sample states, including gas
 - GC-MS methods

Table 3.2 Neodymium Isotope Ratios (by Mass)and the Production of ¹⁴³Nd vs. Total PuProduction (6% ²⁴⁰Pu) as a Function of thePower Level of a Natural-U-Fueled, Graphite-Moderated Reactor

	Natural Nd			
Mass Ratio	1.25	12.5	125	
^{142Nd/} 143Nd	0.00172	0.00081	0.00019	2.212
^{144Nd/} 143Nda	0.964	0.951	0.949	1.973
^{145Nd/} 143Nd	0.704	0.697	0.699	0.692
^{146Nd/} 143Nd	0.571	0.567	0.572	1.478
^{148Nd/} 143Nd	0.343	0.342	0.351	0.487
^{150Nd/} 143Nd	0.160	0.159	0.160	0.484
^{143Nd/} totPu	0.0202	0.0202	0.0194	

Note: Natural Nd isotopic composition is included for comparison. ^aAssumes complete decay of 285-day 144Ce.

Device general signatures

- Designed to have highest possible k (neutron multiplication factor)
 - Greatest increase of neutrons and fission from one generation to the next
 - Cooling from explosion
 - \rightarrow k goes to zero
 - \rightarrow Need to complete reaction in short time
- Designs maximized neutron and fissile material reaction
- Generation time
 - Average time between neutron release and capture
 - Neutron energy 1 MeV
 - \rightarrow 10 n sec per generation
 - * Shake
 - 50 to 60 shakes to produce 1 kt of fission yield
 - → About 0.5 microseconds
 - * Energy generation exponential
 - * Most energy from last few generations

Device general information

- Fast neutron reflection important for device
 - Better use of neutrons, lower critical mass
- Fission spectrum neutrons drive the n,f reaction
 - Not thermalized
- Cross sections for fast neutrons orders of magnitude lower than thermal reactions
 - n, gamma reaction for non-fissile isotopes also lower
- Limiting non-fissile isotopes results in material signatures
 - Less than 7 % ²⁴⁰Pu
 - More than 20 % ²³⁵U
 - Low ²³²U in ²³³U (10 ppm)

Device general information

- Low Z material in Pu not desired
 - React with neutrons
 - Lowers density
 - Moderates neutrons
 - \rightarrow Used as signature

* Pu device isotopes in non-metal form indicates storage or starting material

- Alloys
 - Ga in Pu
 - Nb in U

Post-detonation analysis

- Debris provides information on
 - Function
 - Source
- Efficiency of yield from fuel and fission products
 - High efficiency indicates sophisticated device
 → Also with multiple fissile material and (n,2n) reactions
- Indication of initial isotopic compositions
 - Neutron energy influences fission product distribution
 - \rightarrow Also varies with nuclear fuel

Overview

- Discussed signatures
 - Isotopic ratios
- General device overview

Questions

- What signatures are available from
 - Pu isotopic ratios
- What material can be alloyed with Pu?
- Why do Nd fission product isotopes differ from natural

Questions

- **Respond to blog with questions**
- PDF Quiz 12

